Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.

Çظ¶ theta ¸®µë°ú pyramidal neuronÀÇ ¼¼Æ÷³» Ư¼º°úÀÇ »ó°ü°ü°è

CORRELATIONS BETWEEN HIPPOCAMPAL THETA RHYTHM AND INTRACELLULAR CHARACTERISTICS OF PYRAMIDAL NEURONS

´ëÇѼҾÆÄ¡°úÇÐȸÁö 1998³â 25±Ç 4È£ p.671 ~ 682
¼Ò¼Ó »ó¼¼Á¤º¸
±Ç¿ÀÈï/Oh-Hwung Kwon ±è¿µÁø/³²¼øÇö/±èÇöÁ¤/À̸¸±â/Á¶ÁøÈ­/ÃÖº´ÁÖ/Young-Jin Kim/Soon-Hyeun Nam/Hyeun-Jung Kim/Man-gee Lee/Jin-Hwa Cho/Byung-Ju Choi

Abstract

°á·Ð
¼¼Æ÷³»·Î ÃøÁ¤µÈ Çظ¶ ÁÖ¼¼Æ÷ÀÇ ¹ßÈ­ Pattern°ú ¼¼Æ÷¿ÜºÎ·Î ÃøÁ¤µÈ network pattern°úÀÇ
°ü°è¸¦ ¹àÈ÷±â À§ÇØ ÁÖÀ§ ¼¼Æ÷µé°ú ¿ÏÀüÇÑ »óÅ·Π½Å°æ¸ÁÀÌ º¸Á¸µÈ in vivo ¿¬±¸¸ðµ¨À» »ç
¿ëÇÏ¿© Çظ¶ÀÇ CAI¿µ¿ª¿¡ Á¸ÀçÇÏ´Â pyramidal conÀ» holdingÇÏ°í ½Å°æ»ý¸®ÇÐÀû º¯¼ö¸¦ Ãø
Á¤ÇÑ ÈÄ neurobiotinÀ» ä¿ö¼­ ÇüÅÂÇÐÀû ÃßÀûÀ» ÇÏ¿´´Ù.
1.¼¼Æ÷ÀÇ theta°úÀÇ negative peak¿¡ ¼¼Æ÷³» AP¹ßÈ­°¡ À§»ó ÀÏÄ¡µÇ´Â °æÇâÀÌ ÀÖ¾úÀ¸³ª ¼¼
Æ÷ÀÇ thetaÆÄ°¡ ¹ß»ýµÇÁö ¾ÊÀº Á¶°Ç¿¡¼­´Â ¼¼Æ÷³» AP¹ßÈ­°¡ theta ÆÄÇüÀ» Çü¼ºÇÏ´Â ¿©ºÎ´Â
¼¼Æ÷¸· ÀüÀ§·Î¼­ Á¶ÀýÇÒ ¼ö ¾ø¾ú°í ½Å°æ¼¼Æ÷ÀÇ Á¶°Ç°úµµ °ü°è°¡ ¾ø¾ú´Ù.
2. Frequency-current relactionÀº 53.4 Hz/nA ¹× 15.9 Hz/nA (fist ISI ¹× Bast ISI)·Î¼­
spike frequencyÀÇ ÀûÀÀÇö»óÀÌ ¶Ñ·ÇÀÌ ³ªÅ¸³µ´Ù.
3. ´ÜÀÏ action potentialÈÄ AHP°¡ ³ªÅ¸³µÀ¸¸ç ´ëºÎºÐÀÇ ¼¼Æ÷¿¡¼­ ÀÚ¹ßÀû ¹ßÈ­ ¾çÅ°¡ ¹Ì
¾àÇß´Ù.
4. ¼¼Æ÷³» ¹ÝÀÀÀÇ Æ¯Â¡À¸·Î ³ôÀº ÈÞÁö±â ¼¼Æ÷¸· ÀüÀ§, ³·Àº input resistance, ±×¸®°í Å«
action potentialÀ» °¡Á³´Ù.
5. Commissural afferent ÀÚ±ØÀ¸·Î pyramidal cellÀÇ ÀüÀ§°¡ º¯È­µÇ¾úÀ¸¸ç ÀüÇüÀûÀÎ EPSP
¹× IPSP ¹ÝÀÀÀ» ³ªÅ¸³»¾ú´Ù.
ÀÌ»óÀÇ º» ¿¬±¸ °á°ú·Î¼­ Çظ¶ÀÇ ±â´ÉÀû ƯÀ̼º¿¡ ´ëÇÑ Çü»óÈ­ ±âÀüÀ» ¹Ì·ç¾î º¸¸é ¿ì¼±
Schaffer collateral-commissural pathway Àڱؿ¡ ÀÇÇÏ¿© ½Ã³À½º ÈÄ ¹ÝÀÀÀÌ ¾ß±âµÇ¾î
pyramidal cell ¹× interneuronÀÌ È°¼ºÈ­µÉ °ÍÀ¸·Î »ç·áµÇ¸ç ÀÌÁß ¾ïÁ¦¼º intemeuronÀº È°¼º
È­µÈ pyramidal cellÀÇ population size¸¦ ÇÑÁ¤ÇÔÀ¸·Î½á hippocampal cellµéÀÇ °ø°£Àû ¹ßÈ­¾ç
Å°¡ ´Ù¾çÇÏ°Ô µÉ °ÍÀ¸·Î ¹Ï¾îÁø´Ù.
#ÃÊ·Ï#
Electrophysiological phenomena of pyramidal cells in the CAI area of the dorsal
hippocampus were recorded from and filled with neurobiotin in anesthetized rats. The
electropharmacological properties of membrane as well as the cellular-synaptic generation
of rhythmic slow activity (theta) were examined.
The intracellular response characteristics of these pyramidal cells were distinctly
different from responses of interneurons. Pyramidal cells had a high resting membrane
potential, a low input resistance, and a large amplitude action potential. A
afterhyperpolarization was followed a single action potential.
Most of pyramidal cells did not display a spontaneous firing. Pyramidal cells displayed
weak inward rectification and anodal break excitation. The slope of the
frequency-current relation was 53.4 Hz/nA for the first interspike interval and 15.9
Hz/nA for the last intervals, suggesting the presence of spike frequency adaptation.
Neurobiotin-filled neurons showed pyramidal morphology. Cells were generally bipolar
dendrite processes ramifying in stratum lacunosum-moleculare. radiatum, and oriens.
Commissural stimulation discharged pyramidal cells, followed by excitatory and
inhibitory postsynaptic potentials (EPSPS and IPSPs). The frequency of theta-related
membrane potential oscillation was voltage-independent in pyramidal neurons. At strong
depolarization levels (less than 30 mV) pyramidal cells emitted sodium spike oscillation,
phase-locked to theta. The observations provide direct evidence that theta-related
rhythmic hyperpolarization of principal cells is brought by the rhythmically discharging
interneurons. Furthermore, the findings in which interneurons were also paced by
rhythmic inhibitory postsynaptic potentials during theta suggest that they were
periodically hyperpolarized by their GABAergic septal afferents.

Å°¿öµå

intracelluar recording; pyramidal cell theta rhythm; neurobiotin;

¿ø¹® ¹× ¸µÅ©¾Æ¿ô Á¤º¸

 

µîÀçÀú³Î Á¤º¸

KCI